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Stabilization of multiarmed spiral waves by circularly polarized electric fields
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The influence of circularly polarized electric fields (CPEFs) on the stability of multiarmed spiral waves is
investigated. It is shown that CPEFs can change the period of the multiarmed spirals. The average period is an
important quantity of multiarmed spiral and it must be larger than a threshold for stable multiarmed spiral.
After a counter-rotating CPEF with suitable amplitude and period is applied, the average period of the multi-
armed spiral may increase, which stabilizes the multiarmed spiral.
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I. INTRODUCTION

Excitable media derive much of their interest from varied
and sometimes unexpected spatiotemporal wave patterns ow-
ing to their nonlinearity. All excitable systems share certain
characteristic features. They have a stable rest state, and
small perturbations from the rest state are rapidly damped
out. However, disturbances that cross a certain threshold trig-
ger an abrupt and substantial response. Spiral waves have
been observed in a variety of excitable systems such as the
Belousov-Zhabotinsky (BZ) reaction [1], the cardiac tissue
[2,3], and the catalytic surface processes [4]. Two or more
same-chirality spirals can form multiarmed spirals (bound
states of same-chirality spirals) whose tips are separated by
less than a core diameter. A series of studies, both experi-
mental and theoretical, reports multiarmed spirals [5-17].
They have been observed in BZ reaction [5], Dictyostelium
discoideum [8], the whole rabbit heart [9], two-dimensional
cultured heart tissue [10], etc. Zaritski et al. in [15] studied
multiarmed spirals in a variety of numerical reaction-
diffusion models of excitable media. In Ref. [17], the dynam-
ics of multiarmed spirals in a generic reaction-diffusion
model of an excitable medium is described in detail.

Since the spirals in cardiac muscle play an essential role
in heart diseases such as arrhythmia and fibrillation
[3,18-21], the leading cause of death in the industrialized
world, the control of spirals is of crucial importance. Addi-
tionally, all realistic media are embedded in some environ-
ment and thus undergo external forces and fields. In order to
understand or control the dynamics of a spiral, many experi-
ments have been performed (usually in BZ systems). The
common methods to do this are using light to illuminate a
photosensitive variant of the BZ reaction [22], which leads to
a change in the excitability of the system, or applying an
electric field, [23] which introduces a drift of ionic key spe-
cies of the reaction. However, all these works considered
only one-armed spirals while the influence of external forces
and fields on multiarmed spirals has not been investigated
yet.

In a previous paper, we investigated the drift behavior of
one-armed spirals induced by a polarized electric field in a

*Author to whom correspondence should be addressed;

hongzhang @zju.edu.cn and hzhang @zimp.zju.edu.cn

1539-3755/2009/79(3)/036107(5)

036107-1

PACS number(s): 82.40.Ck, 05.65.+b, 05.45.—a

reaction-diffusion model in the light that both the spiral and
the circularly polarized electric field (CPEF) possess the ro-
tation symmetry [24]. It is worthwhile for us to study the
influence of CPEFs on multiarmed spirals that also possess
the rotation symmetry in present paper.

II. MODEL

We consider the effect of an electric field on spiral dy-
namics using a two-variable reaction-diffusion model with
an additional gradient term E-Vu [25],
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The variables u and v can be viewed as the “fast” and “slow”
variables; € is a parameter characterizing the excitability of
the medium and £=0.02 is used for all results reported in this
paper; and E=(E,,E,) is the electric field and the additional
term E-Vu=E du/dx+E du/dy. A CPEF is composed of
two ac electric fields, E,=FE,cos(wt) and E,=E, cos(wt
+¢), which are applied along the x and y axes, respectively,
and their superposition E rotates with angular frequency w in
two-dimensional space [24]. A CPEF rotates clockwise for
the phase difference ¢=m/2, while it rotates anticlockwise
for ¢=3/2. For numerical simulations, we will consider a
modified FitzHugh-Nagumo model [26], where f(u,v)=u(1
—u)[u—(v+b)/a] and g(u,v)=u-v. The advantage of this
model is that it permits fast calculations and catches the es-
sential features of excitable media. Numerical simulations
are carried out on 320X 320 or 600X 600 grid points em-
ploying the explicit Euler method. The space and time step
are Ax=Ay=0.1826 and Ar=0.005, respectively. No-flux
conditions are imposed at the boundaries.

In Ref. [17], Zemlin et al. explored the phase diagram of
multiarmed spiral in the plane of parameters a—b; the mul-
tiarmed spiral state exists only in a stripelike region. Gener-
ally, the spiral solution with rigid rotation of a reaction-

diffusion model takes the form [5]
u=u(No—owt+a,r), v=v(NO-—wt+pB,r),

where  is the angular velocity, « and § are two phase shifts,
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FIG. 1. Typical snapshots during the evolution of system (1) at
a=1.1 and b=0.2 (a) without external fields (b) in the presence of a
counter-rotating CPEF with Ey=1.0 and w=w;=1.22, where w, is
the average frequency of the single-armed spiral with the same
parameters. The simulation is performed on a square grid contain-
ing 320X 320 grid points. To create the initial condition (¢=0), we
superimpose snapshots of a single-armed spiral in equally spaced
phases, i.e., sum the values of each variable over the different snap-
shots at each point of the medium.

and the topological charge N characterizes the number of
arms and the direction of the rotation (N=* 1, a one-armed
spiral rotating clockwise or anticlockwise; N=*2, a two-
armed spiral).

III. RESULTS AND DISCUSSION

An initial two-armed spiral [Fig. 1(a), t=0] is created by
superimposing snapshots of a single-armed spiral in equally
spaced phases. At parameters a=1.1 and b=0.2, there is no
stable multiarmed spiral [17] and this initial two-armed spi-
ral is not stable and will decay into two single-armed spirals,
as shown in Fig. 1(a). However, when a suitable CPEF is
introduced, the phenomenon is dramatically changed. In Fig.
1(b), a counter-rotating CPEF with E,=1.0 and w=wj is ap-
plied to the initial two-armed spiral and one can see that the
two-armed spiral is stabilized finally. Comparing Fig. 1(a)
with Fig. 1(b), one can see that the CPEF makes a strong
impact on the stability of multiarmed spirals. To our knowl-
edge, only the impact of localized defect on multiarmed spi-
rals is studied [6,7] and little is known about the influence of
external forces and fields on multiarmed spirals. Differing
from localized defect, CPEFs are spatially homogeneous and
can be realized by adding two ac electric fields perpendicular
to each other.

In Fig. 2(a), the corresponding tip trajectories of the sta-
bilized two-armed spiral are shown. When the two tips are
far from each other, their interaction is weak and they mean-
der in their own way. When they move toward each other,
their interaction is strong and at a critical distance they will
collide. After the collision, the directions of motion of the
two tips are changed evidently and they meander in their
own way again. Figure 2(b) shows the distance between the
tips as a function of time; it varies periodically. The minimal
distance corresponds to the collision in Fig. 2(a).

It is then interesting to understand the mechanism under-
lying the above results. As the excitability of weakly excit-
able medium increases the one-armed spiral core radius de-
creases and the front interface begins to feel the medium
disturbance due to the spiral previous passages; this eventu-
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FIG. 2. (Color online) (a) Tip trajectories of a stabilized two-
armed spiral under the control of a counter-rotating CPEF. When
getting close to each other, the two tips collide (marked by two
circles). After that, the tips dramatically change their directions of
motion and then they meander in their own way. (b) The distance
between the two tips as a function of time. The minima occur when
the tips collide. Numerical simulations are carried out in a box with
320X 320 grid points and the parameters are a=1.1, b=0.2, E,
=14, and w=wy=1.22.

ally leads to spiral meander due to the self-interaction of the
wave front with its own recovery tail [27]. While for the
two-armed spiral, one arm will interact with the exponential
recovery tail of the controller field v of the other arm instead
of its own recovery tail. Thus the average period or the av-
erage frequency may be an important quantity characterizing
the multiarmed spiral waves [6,13] since the two arms will
interact with each other strongly (repel each other) and the
two-armed spiral will not be stable when the average fre-
quency is high (or the average period is short). In Ref. 8],
Vasiev et al. showed that for the fixed refractoriness of the
medium, the maximum number of arms of multiarmed spiral
increases with an increase in the rotation period of a single-
armed spiral.

To give an understanding of the stabilization of two-
armed spiral waves by CPEFs, let us investigate one-armed
spirals first. In Fig. 3, we give the average period, the aver-
age wavelength, and the average wave speed of the one-
armed spiral as a function of the parameter b with a=1.1. For
the one-armed spiral without control, the average period and
the average wavelength decrease as we diminish b [squares
in Figs. 3(a) and 3(b)]. When we add a counter-rotating
CPEF with E;=0.5 and w=w, to the system, the average
period and the average wavelength increase [circles in Figs.
3(a) and 3(b)], while for the average wave speed, it changes
little after we apply the CPEF [Fig. 3(c)]. From the results of
one-armed spirals, one can make a conjecture that the aver-
age periods and the average wavelength of the two-armed
spirals will increase after a suitable counter-rotating CPEF is
applied.

The average period of a two-armed spiral as a function of
b is given in Fig. 4(a). The average period of the free two-
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FIG. 3. (Color online) The dependences of (a) the average pe-
riod, (b) the average wavelength, and (c) the average wave speed of
the single-armed spiral on the parameter b for a=1.1. Grid 600
X 600 points. Squares: without control; circles: under the control of
a counter-rotating CPEF with E;=0.5 and w=w (w takes different
values for different b). The average period is sensed by a probe far
from spiral tip, and it is averaged over time. The average wave-
length is the distance between two adjacent maxima of variable u
along radial direction in the region far from spiral tip, and it is
averaged over different directions. The average wave speed equals
the average wavelength divided by the average period. The driving
period (27/ ) equals the average period of the spiral without con-
trol (27/ w,), i.e., the squares in (a).

armed spiral decreases as we diminish b. Once the average
period is lower than a threshold—6.2, where b=0.21—the
two-armed spiral would not be stable anymore, and it will
decay into two single-armed spirals. However, when we add
a counter-rotating CPEF with E;=1.0 and w=w, to the sys-
tem, the average period is increased remarkably [circles in
Fig. 4(a)]. The interaction between these two arms now be-
comes weak, i.e., the repulsion is not strong enough to sepa-
rate the two spiral tips; this actually stabilizes the two-armed
spiral. We conclude that it is the increasing of the average
period of the two-armed spiral by CPEFs that stabilizes the
two-armed spiral. Then, the parameter region that supports
stable two-armed spiral is extended by the external electric
field [from b=0.21 to b=0.1875, see Fig. 4(a) for detail].
The threshold of the average period is now 6.0 which is
almost the same as the case without control. From above
results, one can see that the average period is an important
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FIG. 4. (Color online) The dependences of (a) the average pe-
riod, (b) the average wavelength, (c) the average wave speed, and
(d) the average distance between tips of the two-armed spiral on the
parameter b. Squares: without control; circles: under the control of
a counter-rotating CPEF with Ey=0.5 and w=w,, where wj is the
average period of single-armed spiral without control; and triangles:
the driving period 27/ w. The other parameters are the same as in
Fig. 3.

quantity that may characterize the stability of two-armed spi-
rals. In Fig. 4(b), we give the dependence of the average
wavelength on b which is similar to the case of the average
period. Figure 4(c) shows that the average wave speed of the
two-armed spiral almost keeps invariant when the CPEF is
applied. In Fig. 4(d), we also give the dependence of the
average distance between the two tips on b. Different from
the average period, the average distance does not monoto-
nously decrease as we diminish b. Instead, the average dis-
tance has a local minimal value at »=0.215 in the case of the
spiral being free and at 5=0.195 in the case of the spiral
being controlled by the counter-rotating CPEF.

In order to give a complete description about the spiral
patterns controlled by circularly polarized electric fields, we
present distributions of patterns in the Ey-w plane in Fig. 5.
Three types of phenomena are observed: (1) the two-armed
spiral is not stabilized and it decays into two single-armed
spirals (region “SS” in Fig. 5); (2) the two-armed spiral is
stabilized (region “TS” in Fig. 5) ; and (3) the two-armed
spiral waves break up (region “BU” in Fig. 5). The stability
of a two-armed spiral was assumed if it showed no sign of
decay after 100 spiral rotations. In the TS regime, for fixed
o, the wavelength of the stabilized two-armed spiral in-
creases with E, i.e., the two-armed spiral waves become
sparse as we strengthen the electric field; for fixed E, the
average period of the stabilized two-armed spiral decreases
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FIG. 5. (Color online) The pattern phase diagram in the Ey-w
plane for a=1.1, b=0.19, and wy=1.24. Grid 600 X 600 points. Re-
gion “TS” means that the two-armed spiral is stable. Below the
region TS, the electric field is not strong enough to stabilize the
two-armed spiral and it decays into two single-armed spirals (region
“SS”), and above the region TS, the electric field is so strong that
the two-armed spiral may break up (region “BU”). The initial pat-
tern is a two-armed spiral created by superimposing snapshots of a
single-armed spiral in equally spaced phases.

when we increase w. Below the TS regime, i.e., the SS re-
gime, the electric filed is not strong enough to stabilize the
two-armed spiral, and therefore only single-armed spirals ex-
ist. In the BU regime which is above the TS regime, the
electric filed is so strong that the spiral waves break up. After
they break up, the system will evolve into one of following
three states (the details are not shown in Fig. 5): spiral pat-
tern (including single-armed spiral or two-armed spiral), rest
state, or complicated pattern.

In all above discussions, only counter-rotating circularly
polarized electric fields are investigated. It is also interesting
to study what happens when two-armed spirals are forced
with elliptically, linearly, or corotating circularly polarized
electric fields. Here, we do some numerical simulations to
test the effects of a polarized electric field composed of two
ac electric fields E,=E,cos(wr) and E,=E; cos(wi+ ),
where ¢=O,7T/4,77/2,377/4,7T,57T/4,37f/2,77r/4. When

ZAGI)
/ /NS

$=0 o= n/4 b= n/2 $=3n/4
)
N N N =
d=x $=5n/4 $=3m/2 d=7n/4

FIG. 6. The final patterns controlled by CPEFs with different
phase differences from an initial two-armed spiral. The parameters
here are Ey=1.0, w=wy=0.943, a=1.1, and »=0.21. Grid 600
X 600 points.
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FIG. 7. States evolved from an initial three-armed spiral that is
created by superimposing snapshots of a single-armed spiral in
equally spaced phases (a) without external fields (b) in the presence
of a counter-rotating CPEF with Ey=0.7 and ©=0.50; (wq
=0.732). The other parameters are a=1.2 and b=0.25. Grid 600
X 600 points.

¢=0,7 the electric field is linearly polarized, when ¢
=3/2 it is circularly polarized and its rotation direction is
the same as that of the studied spiral, when ¢=m/2 it is
circularly polarized and it rotates in the opposite direction to
the studied spiral, and when ¢=m/4,37/4,57/4,77/4 it is
elliptically polarized [24]. Under the control of these electric
fields, the two-armed spiral may change to three types of
final patterns (cf. Fig. 6): breaking waves when ¢
=0,7/4,37/4,7,57/4,7mw/4 (linearly or elliptically polar-
ized electric field); two single-armed spirals when ¢=37/2
(corotating CPEF); and stabilized two-armed spiral when ¢
=1/2 (counter-rotating CPEF). The results show that only
counter-rotating CPEFs can stabilize two-armed spirals. Al-
though a corotating CPEF does not make the spiral waves
break up, it can destabilize the two-armed spiral. For ex-
ample, a corotating CPEF with E;=0.15 and w=w, shrinks
the range that supports two-armed spirals in Fig. 4(a) from
b=0.21 to b=0.23.

Aside from two-armed spirals, three-armed spirals can
also be stabilized by CPEFs in the parameter region where it
was unstable. Figure 7(a) is one state evolved from an initial
three-armed spiral without control. One can see that the ini-
tial three-armed spiral is not stable and it decays into one
two-armed spiral and one single-armed spiral. Figure 7(b) is
the final state evolved from the initial three-armed spiral con-
trolled by a counter-rotating CPEF with E;=0.7 and w
=0.5w,. After a transient time, the initial three-armed spiral
is stabilized.

IV. CONCLUSIONS

We have studied the influence of CPEFs on multiarmed
spiral waves. It is shown that the period of the two-armed
spiral plays an important role in determining whether the
multiarmed spiral is stable or not. When the average period
is lower than a threshold magnitude, the repulsion between
two arms becomes so strong that the two-armed spiral will
decay into two single-armed spirals. We find that a counter-
rotating CPEF with suitable amplitude and period can in-
crease the period of the two-armed spiral. This weakens their
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interaction, which may stabilize the two-armed spiral. More-
over, we have shown that three-armed spirals can also be
stabilized by CPEFs in the parameter region where it was
unstable. At last, we expect that our results can be observed
in experiments.
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